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Abstract: We investigate fixed points of an automorphism of a free solvable Lie algebra which permutes

the

generators cyclically. Let © be a cyclic permutation of order n which belongs to the nth symmetric group S,. We give
form of the fixed points of an automorphism of a free solvable Lie algebra which is induced by the permutation ©.
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I.LINTRODUCTION

Let F be the free Lie algebra freely generated by a set
X ={xXq,..,Xp,},n = 2, over a field K. The derived series
of F is defined as the following:

8°(F) = F,8Y(F) = F' = [F,F] and for m > 1 we define
8™(F) = [6™~1(F), 8™ 1 (F)].

Fixed points subalgebras of free Lie algebras are studied
by Bryant[1] and Drensky [3]. In [2] Bryant and Papistas
have obtained some results about fixed point subalgebras
of relatively free Lie algebras. Later, Ekici and S6nmez
[4] have given a criterion detecting nontrivial fixed points
of IA- automorphisms of a free metabelian Lie algebra.

Fixed point subalgebras of automorphisms preserving the
length of words of free solvable groups are described by
Tomaszewski [5]. In this work we obtained
corresponding results for free solvable Lie algebras.

By L, we denote the free solvable Lie algebra F/am (F) of
rank n and solvability class m.

Let 6 be an automorphism of F of order k induced by a
permutation o € S, where S, is the nth symmetric group.
The automorphism 8 induces an automorphism 6: L, —»
L, which is defined as 8(®) = 6(w) + 8™ (F), where
w€eF, ®=w+8(F). For an element @ of L, if
8(w) = o then @ is called a fixed point of L.
It can be easily seen that if 6 has order
element of the form

k then every
® +0 (®) + 0%(@)+... + oK1
€))

is a fixed point for 8, where k > 2, @ € F/5m (F)’

It is not obvious that only such elements are the fixed
points. In this work we prove that every fixed point of 6
has the form (1).
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I1. MAIN RESULT

Assume that o € S, is a product of disjoint cycles o; of
lengthr;, i=1,..,s. LetG = F/p,.

Lemma

Assume that 6 is an automorphism of F which is induced
by o. If 0 is an automorphism of G, induced by © then
every fixed points of 8 has the form

st (@400 +0°@) + -+ 0" @),
where @; =B.%X;,,B, €K i=1,..,s.

Proof
Let 6 be an automorphism of G, induced by 6. If ¥ € G is

a fixed point of 8 then 8(9) = 9. The element ¥ can be
uniquely written as

n
v = Z G )?j , ¢ EK
=1
By taking into account the cycles of o we arrange the
generators which we see in ¥ as ¢ =27, Z:Ll Ci, X, -
Using the equality 6(9) = ¢ we get
¢, = ¢, =By 1<tl<r, i=1,..,s.
Therefore ¥ = Y5, B; (TiL, &;,)- Since 8(%;,) =
Xi,) ...,@(f(iri) =%, then

1

= (I+0+02+--4+067) (%)

M &
5>

t
and so

<L

=2 (1+8+0++0"")(B%,).m

By the above Lemma it is clear that if o is a cycle of order
n and 8 is an automorphism of G induced by 8 then every
fixed point of B has the form
B+ 0@ +0%2(®) + -+ 06" (®),
where ® = BXy, BieK x, €X

Theorem
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Assume that o € S, be a cycle of order n and 6 be an
automorphism of F induced by o.

If 0 is an automorphism of L,, induced by 6 then every
fixed point of 0 has the form

B +0 (@) + 0-(@)+...+ 0" (@),
where @ =o0X,+h, 0a€K, x,€X, hel,.

Proof
Let v € L,, be a fixed point of 8. We use induction on m.

Form=1 L; = F/F’ is a free abelian Lie algebra. So
by the Lemma the result is clear.

Suppose that the assertion is true for all positive integers
less than m. Let 6 be an automorphism of L,,_; induced
by 6.

By induction hypothesis the fixed points of the
automorphism 8 of the algebra

are the elements of the form

Lm—l = F/Sm—lF

&)1 + é ((T)l) + 62(661) + oee + én_l(ff)l),
where (T)l = (X)N(k + hl’ a e K, Xk € X, hl € L’m—l'

Let @i be a fixed point of 8 in L,,_;. Assume that @i =
P (@,), where
P=1+0+08%++08"1.
Since
Ln,m—l = F/(Sm—lF = (F/(SmF)/(Sm 1F/5mF) ’
then the preimage of i in ¥/, ¢ is of the form
a=y(w;)+g+8mF,

where g€ Sm_lF/SmF. Then we have 0 (g) =g in the

algebra 8"1_11:/8m - BY the Lemma the element g has the
form

g =, + 0(®;) + 62(®@,) + -+ + 0" (@),
)

where @, =Bb, BEK, be Sm_1F/(‘SmF . Hence
a=yY(w; +wy)+8F
3

Now let ¥ be a fixed point of 8 in L,,. The element ¥ can
be written as v = v; + v,,

where v; € F(mod8™'F), v, € 8™~'F. Since 8(V) =¥

we get 8(¥,) = ¥, and
8(v,) = ¥,. By (2) and (3) we see that ¥, + ¥, has the
form

\_/1 +\_72 = LTJ((T)l + (T)Z)! where (J_.)l = (Xi_(k + hl! (J_JZ =
Bb, a,peKh €L, aed F/o o

It can be easily seen that every element of the form

®+6 (®) + 0% (®)+...+ 0" 1 (®)
is a fixed point of 0.
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